
For Xcode 15, Swift 5 & iOS 17

MODERN
AUTO
LAYOUT

Building Adaptive Layouts
 For iOS

Keith Harrison

Modern Auto Layout
Building Adaptive Layouts For iOS

Keith Harrison

Web: useyourloaf.com
Version: 8.0.0 (21 Nov 2023)

Copyright © 2023 Keith Harrison

Contents

1 Introduction 1
Why Learn Auto Layout? . 1
Modern Auto Layout . 2
Before We Get Started . 2
What We Will Cover . 4
Get The Code . 5
Change History . 6

2 Layout Before Auto Layout 9
Our First Layout . 10
Autoresizing . 14
Creating A Custom Subclass Of UIView 21
Layout Without Storyboards . 27
Xcode Previews . 43
Key Points To remember . 47
Test Your Knowledge . 48

3 Getting Started With Auto Layout 52
What Is Auto Layout? . 52
What Is A Constraint? . 53
Who Owns A Constraint? . 57
How Many Constraints Do I Need? 60
Test Your Knowledge . 67

4 Using Interface Builder 72
The Many Ways To Create A Constraint 72
Editing A Constraint . 79
Creating Outlets For Constraints 82
Viewing Layout Warnings And Errors 84
Interface Builder Example . 87
Interface Builder Tips And Tricks 97
Test Your Knowledge . 102

5 Creating Constraints In Code 107
Activating and Deactivating Constraints 107
Disabling The Autoresizing Mask 109

i

Creating Constraints With NSLayoutConstraint 110
Visual Format Language . 113
Layout Anchors . 116
Which Should You Use? . 121
Constraints In A Custom View . 122
Key Points To Remember . 125
Test Your Knowledge . 126

6 Safe Areas And Layout Margins 130
Safe Area Layout Guide . 131
Layout Margins . 143
Layout Guides . 156
Keyboard Layout Guide . 164
Key Points To Remember . 177
Test Your Knowledge . 177

7 Layout Priorities And Content Size 181
Layout Priorities . 181
Intrinsic Content Size . 191
Content Mode . 197
Content Hugging And Compression Resistance 200
Key Points To Remember . 208
Test Your Knowledge . 209

8 Stack Views 214
Getting Started With Stack Views 215
A Closer Look At Stack Views . 223
Stack Views And Layout Priorities 232
Dynamically Updating Stack Views 238
Adding Background Views . 243
Stack View Oddities . 248
Key Points To Remember . 253
Test Your Knowledge . 254

9 Understanding The Layout Engine 259
The Layout Pass . 259
Should You Use updateConstraints? 262
Animating Constraints . 263
Custom Layouts . 266
Alignment Rectangles . 272
Key Points To Remember . 277
Test Your Knowledge . 278

10Debugging When It Goes Wrong 283
Unsatisfiable Constraints . 283
Adding Identifiers To Views And Constraints 290
Ambiguous Layouts . 291
Using The View Debugger . 293

ii

Private Debug Methods . 295
Layout Loops . 300
Key Points To Remember . 302

11Scroll Views And Auto Layout 304
Creating Constraints For A Scroll View 304
Frame And Content Layout Guides 314
Scrolling A Stack View . 322
Managing The Keyboard . 327
Key Points To Remember . 332
Test Your Knowledge . 333

12Dynamic Type 337
Using Dynamic Type . 337
Readable Content Guides . 350
Text Views . 355
Scaling Dynamic Type . 358
Custom Fonts With Dynamic Type 361
Restricting Dynamic Type Sizes . 372
Key Points To Remember . 373
Test Your Knowledge . 374

13Working With Table Views 380
Table View Row Height . 380
Self-Sizing Table View Cells . 381
Readable Table Views . 393
Self-Sizing Table View Headers . 397
Key Points To Remember . 409
Test Your Knowledge . 411

14Adapting For Size 414
Trait Collections . 415
Size Classes . 416
Supporting iPad Multitasking . 419
Using Size Classes With Interface Builder 421
Using Traits In Code . 432
Using Traits With The Asset Catalog 446
Variable Width Strings . 450
When Size Classes Are Not Enough 455
Key Points To Remember . 461
Test Your Knowledge . 462

A Tour Of Interface Builder 469
Xcode Toolbar . 470
Inspectors . 471
Library . 472
Document Outline . 472
Device Configuration . 473

iii

Configuring The Editor . 474
Assistant Editor . 476
Previewing Your Layout . 477
Auto Layout Tools . 478

B Layout Essentials 480
The View Hierarchy . 480
View Geometry . 485

C Points vs. Pixels 491

One More Thing 494

iv

Chapter 1

Introduction

You may have heard Auto Layout described as a constraint-based layout
engine. What does that mean? Do you need to know math and write
equations? Why is that any better than manually calculating the size and
position of each view in your layout?

Have you been resisting using Auto Layout? Maybe you tried it and
gave up in frustration? Or maybe you’re new to iOS development and
wondering how to get started. Well, this book is for you.

Why Learn Auto Layout?

Apple first introduced us to Auto Layout in OS X 10.7 Lion. It took a while
longer to come to iOS developers as part of iOS 6 unveiled at WWDC
2012. Auto Layout promises to make your layouts simpler to write, easier
to understand, and less e�ort to maintain.

Using Auto Layout can feel a little abstract at first. Instead of manually
setting the frame of each view you describe the relationships between
your views with constraints and Auto Layout sets the frames for you.
The advantage comes when your layout needs to respond and adapt to
changes.

Dynamic sizing needs a dynamic layout. A modern iOS App needs to
adapt to a broad set of user interface situations:

• Layouts need to scale from the smallest device like the iPhone SE up
to the largest 12.9” iPad Pro and work in slide over and split screen
modes.

• Text size can change significantly with localization and even more
dramatically with dynamic text. Paragraphs of text that fit comfort-

1

Modern Auto Layout 1. Introduction

ably at small text sizes can grow to where one word fills the screen
at the largest of the accessibility sizes.

• You need to be able to quickly adapt when Apple introduces new
devices like the iPhone X with a top sensor housing and home screen
indicator.

You don’t have to use Auto Layout, but many of the above challenges
become manageable when you describe the relationships between your
views with constraints. For example, layouts built with Auto Layout for the
iPhone X in 2017 only needed rebuilding with the latest SDK to support
the new screen sizes of the iPhone XR and iPhone XS Max introduced in
2018.

Modern Auto Layout

What do I mean by “Modern Auto Layout”? A lot has changed over the
years since Apple introduced Auto Layout in iOS 6. For me, Modern Auto
Layout began with iOS 9:

• In iOS 9, Apple added layout anchors and layout guides. They also
added stack views and using Auto Layout got a whole lot less painful.

• In iOS 10, adopting Dynamic type became less work with automatic
font adjustments to content size changes.

• In iOS 11, safe area layout guides and safe area relative margins
replaced top and bottom layout guides. You can change the margins
of the root view. Scroll views got layout guides, and stack views got
custom spacing.

• In iOS 12, Apple improved the performance of Auto Layout but the
API has remained mostly stable since. Apple tweaked the handling
of trait collection changes in iOS 13, and changed the stack view
implementation in iOS 14 making it respond to background colors.

• In iOS 15, Apple added a keyboard layout guide, adding it to Interface
Builder in Xcode 14. In iOS 17, Apple introduced the viewIsAppear-
ing method to the view controller lifecycle, and trait observation
deprecated the old traitCollectionDidChange method.

Before We Get Started

I assume you have a basic knowledge of iOS app development. You should
be comfortable using Xcode to create an app and run it on the simulator
or device.

2

Modern Auto Layout 1. Introduction

This book doesn’t teach you Swift or Objective-C programming or much
about App architecture. I’ve used Swift for the code examples but don’t
worry if you’re not an expert Swift programmer.

If you’re new to Xcode and iOS development I recommended you first
study an introductory tutorial. Apple publishes free guides, available in
Apple Books, as part of its Everyone Can Code initiative:

• Develop in Swift Fundamentals

You may also want to read Appendix A: Tour Of Interface Builder.

Interface Builder Or Code?

Get two or more iOS developers in a room and sooner or later somebody
asks the question. Do you create your views using Interface Builder or in
code? There are pros and cons to each approach, and you will no doubt
have your own opinion.

For this book, I don’t care which way you choose. I aim to teach you Auto
Layout. You can learn with Interface Builder or with layouts created in
code. The choice is yours but here’s the approach I suggest and use in
this book:

• If you’re new to Auto Layout start with Interface Builder. I find it
easier to play around, prototype and get a feel for the key concepts
using Interface Builder.

• As soon as you feel comfortable with the basics create some layouts
in code. Do this even if you prefer Interface Builder. It’s a great way
to test your understanding.

• As your experience grows, you’ll learn for yourself what works best.
Knowing both approaches has other advantages. You never know
when you may find yourself working on a codebase where somebody
else chose for you.

• Resist the temptation to dive into one of the many popular third-party
frameworks for Auto Layout until you have mastered the basics for
yourself. You may find you don’t need them.

Which Versions Of Xcode, iOS, And Swift?

I’ve updated this edition of the book using Xcode 15, iOS 17 and Swift
5.9. The Auto Layout API’s have not changed significantly since iOS 11
so most of the code should work unchanged back that far. I do my best
to point out changes and how to fall back for earlier iOS versions along
the way.

3

https://www.apple.com/everyone-can-code/
https://books.apple.com/book/develop-in-swift-fundamentals/id1556365994

Modern Auto Layout 1. Introduction

Finally, while the concepts and API’s for Auto Layout mostly also apply
to macOS I wrote this book primarily for iOS developers.

What We Will Cover

The first part of the book covers the fundamentals of Auto Layout. The
key concepts that make it work and the tools to apply it to your layouts:

• Chapter 2: We start by looking at how we did layout before Auto
Layout by manually managing the frames of views and relying on au-
toresizing or when that’s insu�cient by overriding layoutSubviews.
We also look at how to create an Xcode project to work without
storyboards.

• Chapter 3: Introduces you to constraints, what they are, who owns
them and how many you need to create common layouts.

• Chapter 4: We dive into using Interface Builder to create andmanage
constraints. We look at the many ways to create constraints and
what the warnings and errors mean. We also have lots of useful tips
and tricks to help you master Interface Builder.

• Chapter 5: You don’t have to use Interface Builder to use Auto
Layout. In this chapter, we look at the three ways Apple gives us to
create constraints in code and why you want to use layout anchors.

• Chapter 6: Safe Area Layout Guides became a hot topic when Apple
launched the iPhone X. In this chapter, we look at how to use them
to keep the system from clipping or covering your content. We also
look at using layout margins for extra padding and layout guides as
an alternative to spacer views. Finally we take a look at the keyboard
layout guide introduced in iOS 15.

• Chapter 7: We cover the topics that cause many people to hate Auto
Layout. The tricky concepts of layout priorities, intrinsic content
size, and content-hugging and compression-resistance.

• Chapter 8: Stack views were a welcome and overdue addition in iOS
9. Build layouts without having to manually create every constraint
in Interface Builder or with pages of boilerplate code. We also cover
some useful improvements that came in iOS 11 and some oddities
to avoid.

• Chapter 9: Time to dig deep into how the layout engine works to
translate your constraints into a working layout. Why you probably
shouldn’t be using updateConstraints, how to animate changes to

4

Modern Auto Layout 1. Introduction

constraints and how to override layoutSubviews to take control of
the layout.

• Chapter 10: How do you debug your layouts when they go wrong?
We look at the tools and techniques to understand and fix your Auto
Layout problems.

With the foundation built the second part of the book looks at how to use
Auto Layout with related API’s to build adaptive layouts.

• Chapter 11: The scroll view is an essential view to master when
building layouts with content too big for the available space. We use
it often in later chapters to build more adaptive layouts. It improved
in iOS 11, but it can still be confusing to use with Auto Layout. In
this chapter, you learn how to create your constraints when adding
content to a scroll view.

• Chapter 12: Dynamic type puts the user in control of the size of text
in your App. In this chapter, we learn how to use dynamic type and
adapt our layouts to cope with dramatic changes in text size. We
also see how to use custom fonts with Dynamic type.

• Chapter 13: Self-sizing table view cells are a regular source of pain
and confusion. In this chapter, we learn how they work, how to
use readable content guides with table views and how to use Auto
Layout to create self-sizing table view headers and footers.

• Chapter 14: In the final chapter we bring everything together to look
at how to build layouts that adapt to the size of the screen. Learn
how to use trait collections and size classes, create asset variations
and variable width strings. Finally, we go beyond size classes to
build adaptive layouts based on the available space.

Can I o�er some extra words of advice? It’s hard to learn Auto Layout
just by reading about it. You need to use it. I suggest you set aside time
for deliberate, focused learning. Read a chapter or a section of the book
and then apply the knowledge. The challenges at the end of each chapter
get you started, but you also need to practice for yourself.

Get The Code

You can download the sample code used in this book together with the
solutions to the challenges from my GitHub repository for the book:

• https://github.com/kharrison/albookcode

5

https://github.com/kharrison/albookcode

Modern Auto Layout 1. Introduction

Xcode Project And File Templates

In this book when I create a layout using Interface Builder, I start from
the Xcode iOS App template. For programmatic layouts, I remove the
storyboard from that template. I describe the steps to do that in the next
chapter but if you prefer you can use my already customized templates.

You can find full instructions and download the templates from my GitHub
repository:

• https://github.com/kharrison/Xcode-Templates

Change History

Eighth Edition

The eighth edition of this book covers Xcode 15, iOS 17 and Swift 5.9.
There are the usual minor updates to screenshots for new devices, the
most significant update is to the trait system. A summary of the main
changes:

• Chapter 2 Xcode 15 deprecates IBDesignable so I’ve replaced it
with Xcode Previews. The view controller lifecycle now includes
viewIsAppearing (new in iOS 17, but back-deployable to iOS 13).

• Chapter 14: The trait system has undergone some significant
changes in iOS 17. The traitCollectionDidChange method is
deprecated, replaced by trait observation where you register for
specific trait changes.

• Appendix C: Add the iPhone 15 devices.

Seventh Edition

The seventh edition of this book covers Xcode 14, iOS 16 and Swift
5.7. I’ve streamlined some sections, now of minor interest, covering
backwards compatibility with iOS 9/10. A summary of the main changes:

• Chapter 4: Xcode 14 removes preview from the editor options in
Interface Builder. Use the device, appearance, orientation and ac-
cessibility controls in the canvas toolbar instead.

• Chapter 6 The bugs with keyboard layout guide added in iOS 15 are
now mostly fixed. Xcode 14 adds the guide to Interface Builder.

• Chapter 14: Added the iPhone 14 models to the size class graphics.

• Appendix C: Add the iPhone 14 and 2022 iPad devices.

6

https://github.com/kharrison/Xcode-Templates

Modern Auto Layout 1. Introduction

Sixth Edition

The sixth edition of this book covers Xcode 13, iOS 15 and Swift 5.5. A
summary of the main changes:

• Chapter 2 Xcode 13 has a di�erent way of managing Info.plist set-
tings. I’ve updated the procedure to remove storyboards from a
project accordingly.

• Chapter 6 Added a new section on the keyboard layout guide added
in iOS 15.

• Chapter 12 Dynamic type size can be restricted in iOS 15.

• Chapter 14: The Vary For Traits buttons has been removed in Xcode
13 changing the way you create adaptive layouts in Interface Builder.

• Appendix C: Add the iPhone 13 devices.

Fifth Edition

The fifth edition of this book covers Xcode 12, iOS 14 and Swift 5.3. A
summary of the main changes:

• Chapter 4: Xcode 12 renames the default layout mode in the size
inspector from “Automatic” to “Inferred” when indicating if you’re
using the autoresizing mask or constraints.

• Chapter 8: Stack views in iOS 14 now display their background color.
I recommend reviewing the section on Stack View Background Color
for details.

• Chapter 14: The userInterfaceIdiom trait property adds the .mac
value in iOS 14. There’s also a new trait for activeAppearance that
is used on mac platforms to indicate a window should have an active
appearance. The size class details have been updated to include the
iPhone 12 models.

• Appendix C: I’ve added the screen sizes for iPad and iPhone devices
that support a minimum of iOS 13. This includes the latest iPhone
12 devices.

Fourth Edition

The fourth edition of this book covers Xcode 11, iOS 13 and Swift 5.1. A
summary of the main changes:

• Chapter 2: iOS 13 adds iPad multiple window support. I don’t cover
this in detail but I’ve updated the section on removing the storyboard

7

Modern Auto Layout 1. Introduction

to show how to setup your Xcode project with or without the scene
delegate.

• Chapter 4: I’ve updated the examples for the new Xcode user in-
terface. Also note that Interface Builder has a new layout mode
option in the size inspector to show whether a view translates the
autoresizing mask into constraints.

• Chapter 9: Interface Builder now shows custom alignment rectan-
gles in the canvas.

• Chapter 11: Scroll view frame and content layout guides are now
supported in Interface Builder.

• Chapter 12: Environment overrides in the Xcode debugger make
it easier to preview di�erent dynamic text sizes for a running App
(iOS 13 only).

• Chapter 13: Interface Builder now correctly sizes self-sizing table
view cells in the storyboard (but not NIB) canvas.

• Chapter 14: There’s a potentially layout breaking change for trait
collections in iOS 13. UIKit now guesses the likely traits for a view
when you create it. If UIKit has guessed correctly you no longer
get a call to traitCollectionDidChange when adding a view to the
view hierarchy. If you’ve been relying on this for initial view setup
in iOS 12 you’ll need to make changes for iOS 13.

Third Edition

A summary of the main changes:

• Chapter 6: Added note on a bug in iOS 9 and iOS 10 storyboards
that could prevent a custom layout margin from working.

• Chapter 13: Added an example of a self-sizing table view header.

Second Edition

A summary of the main changes:

• Chapter 4: Updated screenshots for the changed appearance of the
add constraint menu.

• Appendix C: Added the screen sizes of the new iPad models.

8

Chapter 7

Layout Priorities And
Content Size

You cannot progress far with Auto Layout without understanding how to
use layout priorities. In this chapter you learn:

• How to use priorities to create optional constraints and when to use
them.

• How the standard UIKit controls can have a natural, intrinsic size
to fit their content.

• How to use the contentMode property to control the scale and posi-
tion of the contents of a view when the bounds of the view change.

• How to use content-hugging or compression-resistance priorities
to stretch or squeeze the natural size of views to fit a layout. An
essential Auto Layout technique to master.

These topics are often the ones that cause people to dislike Auto Layout.
Don’t panic! Take it one step at a time always keeping one eye on what
problems each new technique can solve for you.

Layout Priorities

The layout engine treats any constraints you create as required con-
straints by default. The layout engine must satisfy all required constraints,
or the layout is invalid. Sometimes you want to have an optional con-
straint. Consider this layout where I have two images of unequal size. I
want to put a label below the images:

181

Modern Auto Layout 7. Layout Priorities And Content Size

If we know that the image on the right is always the tallest we can add a
vertical spacing constraint from the top of the label to the bottom of the
image:

What if we don’t know until runtime which of the two images is the tallest?

182

Modern Auto Layout 7. Layout Priorities And Content Size

This is where optional constraints come to the rescue.

Optional And Required Priorities

All constraints have a layout priority from 1 to 1000. The priority is of type
UILayoutPriority and UIKit helpfully defines constants for arbitrary
“low” and “high” values which it uses as default values:

• .fittingSize (50)
• .defaultLow (250)
• .defaultHigh (750)
• .required (1000)

Constraints with a priority lower than .required (1000) are optional.
The layout engine tries to satisfy higher priority constraints first. When it
cannot fully satisfy an optional constraint, it does its best to get as close
as possible. We’ll see an example of using the .fittingSize priority
when we look at Self-Sizing Table View Headers.

Once you have activated a constraint you cannot change
its priority from required to optional or vice versa. Doing
so causes a runtime crash. You can change the priority of
an optional constraint, as long as you keep it optional (<
1000).

Returning to our layout how can we use optional constraints to position
the label? Think first, what we can say about our desired layout?

• The label should be at least a standard amount of spacing below the
sun image.

• The label should be at least a standard amount of spacing below the
snowflake image.

• The label should be as close to the top of the view as possible.

Words like at least or at most suggest a constraint using inequalities.
A phrase like as close as possible suggests an optional constraint.

Optional Constraints In Interface Builder:

To create this layout, I’m using a sun image that’s 100x100 points and a
snowflake image that’s 150x150 points (see sample code: Priorities-v1).
The exact image size is not important. Use mine from the sample code or
substitute them with your images:

1. Create a new Xcode project using the iOS App template.

183

https://github.com/kharrison/ALBookCode/tree/main/sample-code/layout-priorities/Priorities-v1/

Modern Auto Layout 7. Layout Priorities And Content Size

2. Add the sun and snow images from the sample code, or your images
if you prefer, to the project asset catalog. I’m using PDF vector
images:

3. Drag two image views from the object library onto the view in the
Interface Builder canvas. Position them against the margins towards
the top corners of the view and use the Attributes inspector to show
the sun image on the left and the snow image on the right:

184

Modern Auto Layout 7. Layout Priorities And Content Size

Change the background color of the sun image view to orange and
the snowflake image view to blue.

4. Fix the position of the sun image view by control-dragging from the
image view to the root view in the document outline. Hold down the
Option key and the Shift key to add constraints to the leading and
top margins of the root view:

5. In the same way, pin the snowflake image view to the trailing and
top margins of the root view:

6. Drag a label from the object library onto the canvas and position it
below the two images. Add some text and increase the font size to
32 points. Size the label so that it fills the width between the leading
and trailing margins. Set the number of lines for the label to zero to
allow the text to wrap over multiple lines if necessary:

185

Modern Auto Layout 7. Layout Priorities And Content Size

7. To fix the horizontal position control-drag from the label to the root
view and create constraints to the leading and trailing margins.

Note that this also fixes the width of the label.

8. Create the two inequality constraints that keep the label below the
two images. First control-drag from the label to the sun image view
and create a vertical spacing constraint.

9. Use the size inspector to change the relation of the constraint to
“Greater Than Or Equal”. Make sure the constant is using the
“Standard Value”:

186

Modern Auto Layout 7. Layout Priorities And Content Size

10. Create another “Greater Than Or Equal” inequality constraint from
the label to the snowflake image:

Both of these constraints are required constraints but because they
are inequalities they don’t fix the vertical position of the label.

11. To pull the label “as close as possible” to the top margin we need an
optional constraint. Control-drag from the label to the root view in
the document outline and with the Option key held down create a
top space constraint to the container margin.

187

Modern Auto Layout 7. Layout Priorities And Content Size

12. This constraint is not yet an optional constraint. Find and click on
the constraint in the canvas or document outline and edit it using
the attributes inspector. Change the priority to Low (250) and the
constant value to zero:

Note how Interface Builder shows the optional constraint with a
dotted line.

13. Build and run and check the label does stay below the tallest image.

Creating Optional Constraints In Code

Let’s recreate the last example using a programmatic layout so we can see
how to create an optional constraint in code (see sample code: Priorities-
v2):

1. Start a new Xcode project and add the two image resources to the

188

https://github.com/kharrison/ALBookCode/tree/main/sample-code/layout-priorities/Priorities-v2/
https://github.com/kharrison/ALBookCode/tree/main/sample-code/layout-priorities/Priorities-v2/

Modern Auto Layout 7. Layout Priorities And Content Size

asset catalog as in the last example.

2. I need two properties in the view controller for the image views.
To avoid duplicating the setup code, we can add a convenience
initializer to a private UIImageView extension in the view controller:

private extension UIImageView {
convenience init(named name: String, backgroundColor:

UIColor) {
self.init(image: UIImage(named: name))
self.backgroundColor = backgroundColor
translatesAutoresizingMaskIntoConstraints = false

}
}

Our two image view properties use this initializer:

private let sunView = UIImageView(named: "Sun",
backgroundColor: .orange)

private let snowView = UIImageView(named: "Snow",
backgroundColor: .blue)

3. We also need a label for the caption that’s below the images:

private let captionLabel: UILabel = {
let label = UILabel()
label.translatesAutoresizingMaskIntoConstraints = false
label.text = "This label should be below the tallest of
the two images"
label.font = UIFont.systemFont(ofSize: 32.0)
label.numberOfLines = 0
return label

}()

4. Build the view hierarchy in setupView:

override func viewDidLoad() {
super.viewDidLoad()
setupView()

}

private func setupView() {
view.addSubview(sunView)
view.addSubview(snowView)
view.addSubview(captionLabel)

}

189

Modern Auto Layout 7. Layout Priorities And Content Size

5. Create and activate the constraints starting with the sun view pinned
to the top and leading margins (in setupView()):

let margins = view.layoutMarginsGuide
NSLayoutConstraint.activate([

sunView.leadingAnchor.constraint(equalTo:
margins.leadingAnchor),
sunView.topAnchor.constraint(equalTo:
margins.topAnchor),

6. Pin the snow view to the top and trailing margins:

snowView.topAnchor.constraint(equalTo:
margins.topAnchor),
snowView.trailingAnchor.constraint(equalTo:
margins.trailingAnchor),

7. Constrain the caption label to fill the width between the leading and
trailing margins:

captionLabel.leadingAnchor.constraint(equalTo:
margins.leadingAnchor),
captionLabel.trailingAnchor.constraint(equalTo:
margins.trailingAnchor),

8. Create the two inequality (>=) constraints that position the label at
least a standard amount of spacing below the two images:

captionLabel.topAnchor.constraintGreaterThan
OrEqualToSystemSpacingBelow(sunView.bottomAnchor,
multiplier: 1.0),
captionLabel.topAnchor.constraintGreaterThan
OrEqualToSystemSpacingBelow(snowView.bottomAnchor,
multiplier: 1.0),

The system spacing methods were new in iOS 11. If you need to
support iOS 10 and earlier replace these two constraints with 8
point constant constraints:

captionLabel.topAnchor.constraint(greaterThanOrEqualTo:
sunView.bottomAnchor, constant: 8.0),
captionLabel.topAnchor.constraint(greaterThanOrEqualTo:
snowView.bottomAnchor, constant: 8.0),

9. Finally we need the optional top constraint for the label. First create
the constraint from the label to the top margin as normal:

190

Modern Auto Layout 7. Layout Priorities And Content Size

let captionTopConstraint =
captionLabel.topAnchor.constraint(equalTo:
margins.topAnchor)

10. Set the priority to .defaultLow (250) to make it optional:

captionTopConstraint.priority = .defaultLow

11. Then add it to the array of constraints to activate:

NSLayoutConstraint.activate([
// other constraints
captionTopConstraint

])

Set the priority of the optional constraint before you acti-
vate it to avoid a runtime exception.

Intrinsic Content Size

Some views have a natural size based on their content. A view wants to
be this natural size unless you add constraints that stretch or squeeze it.
This natural size is also known as the intrinsic content size.

Views without an intrinsic content size must have their width and height
set with constraints.

All views have an intrinsicContentSize property. This
is a CGSize with a width and a height. A view can use the
value UIViewNoIntrinsicMetric when it has no intrinsic
size for a dimension.

Standard UIKit Controls

Common UIKit controls like the button, label, switch, stepper, segmented
control, and text field have both an intrinsic width and height:

191

Modern Auto Layout 7. Layout Priorities And Content Size

UIButton

The text and the font used can change the intrinsic content size of a button.
If you use insets to add padding or move the image or title be aware that
only contentEdgeInsets has any e�ect on the intrinsic content size.

The titleEdgeInsets and imageEdgeInsets position the title and image
during layout after the system sets the button size. They don’t change
the intrinsic content size.

To pad the size of a button add content edge insets rather
than a fixed width or height constraint.

192

Modern Auto Layout 7. Layout Priorities And Content Size

For example, suppose we have a custom button that’s using the default
18 point system font:

If we create the button in code and check its intrinsic content size. It has
a size of 41 x 34:

let button = UIButton(type: .custom)
button.setTitle("Hello", for: .normal)
button.backgroundColor = .green
button.intrinsicContentSize // (w 41 h 34)

Adding top and bottom content insets of 10 points and bottom and left
and right content insets of 20 points increases the intrinsic content size:

button.contentEdgeInsets = UIEdgeInsets(top: 10, left: 20,
bottom: 10, right: 20)

button.intrinsicContentSize // (w 81 h 42)

Changing layer properties like the corner radius doesn’t change the
intrinsic content size:

193

Modern Auto Layout 7. Layout Priorities And Content Size

button.layer.cornerRadius = 10.0
button.intrinsicContentSize // (w 81 42)

UILabel

By default, a UILabel has an intrinsic content size that shows the text
content on a single line. For long lines of text that can lead to truncation
as here with a label constrained between the leading and trailing margins:

The “natural” intrinsic content size of the label is much wider than the
visible bounds of the label:

label.intrinsicContentSize // (w 853 h 20.5)
label.bounds.size // (w 343 h 20.5)

If you constrain the width of a label but leave the height free and set
numberOfLines to 0 the intrinsic content size of the label adjusts for the
number of lines needed to show the full text:

label.intrinsicContentSize // (w 333 h 64.5)
label.bounds.size // (w 343 h 64.5)

194

Modern Auto Layout 7. Layout Priorities And Content Size

UISlider and UIProgressView

The UISlider and its close relation the UIProgressView are unusual for
UIKit controls in that they only have an intrinsic height, not a width. The
thumb of a slider and the track of the progress view set their heights,
but you must add constraints to fix the width of the track.

let slider = UISlider()
slider.intrinsicContentSize // (w -1 h 33)

UIImageView

The size of the image sets the intrinsic content size of an image view. An
empty image view doesn’t have an intrinsic content size.

let imageView = UIImageView()
imageView.intrinsicContentSize // (w -1 h -1)

imageView.image = UIImage(named: "Star")
imageView.intrinsicContentSize // (w 100 h 100)

UITextView

A text view that has scrolling enabled doesn’t have an intrinsic content
size. You must constrain the width and height. The text view shows the
text in the available space scrolling if needed.

With scrolling disabled a text view acts as a UILabel with numberOfLines
set to zero. Unless you constrain the width a text view has the intrinsic
content size for a single line of text (assuming no carriage returns). Once
you constrain the width, the text view sets its intrinsic content size height
for the number of lines needed to show the text at that width.

Views With No Intrinsic Content Size

A plain old UIView has no content so has no intrinsic content size. Scroll
views, web views and text views with scrolling allowed don’t have an
intrinsic content size. You must add constraints for the width and height.
The view then shows its content in the available space scrolling if neces-
sary.

195

Modern Auto Layout 7. Layout Priorities And Content Size

Custom Views

When you create a custom subclass of UIView, you can choose to override
intrinsicContentSize and return a size based on the content of your
custom view. If your view doesn’t have a natural size for one dimension
return UIViewNoIntrinsicMetric for that dimension:

// Custom view with an intrinsic height of 100 points
class CustomView: UIView {

override var intrinsicContentSize: CGSize {
return CGSize(width: UIViewNoIntrinsicMetric, height: 100)

}
// ...

}

If the intrinsic content size of your custom view changes tell the layout
engine by calling invalidateIntrinsicContentSize().

Intrinsic Content Size In The View Debugger

The Auto Layout engine creates special constraints for the intrinsic con-
tent size of a view. If you’re curious, you can see these constraints in
the view debugger. They are of type NSContentSizeLayoutConstraint,
a private subclass of NSLayoutConstraint, so you cannot create them
directly:

The intrinsic content size constraints are always labeled (content size)
so they stand out against normal height and width constraints. For
example, if I add a constraint to this label to fix the height at 60:

196

Modern Auto Layout 7. Layout Priorities And Content Size

Our height constraint overrides the intrinsic height and stretches the
label beyond its natural height.

Content Mode

The contentMode property of UIView controls how to adjust a view when
its bounds change. The system will not, by default, redraw a view each
time the bounds change. That would be wasteful. Instead, depending on
the content mode, it can scale, stretch or keep the contents in a fixed
position.

To see how this works I have an image view containing a vector im-
age of a star pinned to the margins of the root view (see sample code:
ContentMode):

In Interface Builder you set the content mode for a view using the At-
tributes inspector:

197

https://github.com/kharrison/ALBookCode/tree/main/sample-code/layout-priorities/ContentMode/

Modern Auto Layout 7. Layout Priorities And Content Size

You can also set the content mode of a view in code:

imageView.contentMode = .scaleAspectFit

There are thirteen di�erent content modes, but it’s easiest to think of
three main groups based on the e�ect:

• Scaling the content (with or without maintaining the aspect ratio)
• Positioning the content
• Redrawing the content

Scaling the View

Three modes have the e�ect of scaling or stretching the view contents to
fill the available space when the bounds changes.

• .scaleToFill: Stretches the content to fill the available space with-
out maintaining the aspect ratio. The default mode.

• .scaleAspectFit: Scales the content to fit the space maintaining
the aspect ratio.

• .scaleAspectFill: Scales the content to fill the space maintaining
the aspect ratio. The content can end up larger than the bounds of
the view resulting in clipping.

198

Modern Auto Layout 7. Layout Priorities And Content Size

If your deployment target is iOS 11 or later and you want to use PDF
vector images that are scaled smoothly without blurring at runtime select
“Single Scale” and “Preserve Vector Data” in the asset catalog.

Positioning the View

If you don’t want to scale or stretch the view, you can pin it to one of nine
possible positions.

• .center
• .top, .bottom, .left, .right
• .topLeft, .topRight, .bottomLeft, .bottomRight

Note that the image view is still filling the space between the margins.
The image view positions the image within its bounds based on the mode:

199

Modern Auto Layout 7. Layout Priorities And Content Size

Redrawing the View

The .redraw mode triggers the setNeedsDisplay() method on the view
when the bounds change allowing the view to redraw itself. You probably
want this mode if you have a custom UIView that implements draw(_:)
to draw its content within the view bounds.

Content Hugging And Compression Resistance

If you use Interface Builder to create your constraints it will at some
point o�er you this helpful suggestion:

The Content Priority Ambiguity problem that Interface Builder is warning
you about can also be hiding in your layout code.

Stretching And Squeezing

Views like labels and image views have a natural (intrinsic) content size
that they want to be. Sometimes there’s not enough space and the layout
engine has to squeeze a view smaller than its natural size to fit. Other
times the layout engine has to stretch a view beyond its natural size to
fill a space.

When there are several views in a layout how does the layout engine
decide which view to stretch or squeeze? This is where content-hugging
and compression-resistance priorities come into play.

200

Modern Auto Layout 7. Layout Priorities And Content Size

Don’t Squeeze Me – Compression-Resistance

All views have both a horizontal and vertical Compression-Resistance
priority. These tell the layout engine how strongly a view resists be-
ing squeezed below its natural size in each dimension. The higher the
Compression-Resistance priority, the more a view resists squeezing.

When the layout engine needs to squeeze a view to fit in a space, it
chooses the view with the lowest Compression-Resistance priority. If
there’s not one view and only one view with the lowest priority the layout
is ambiguous.

Don’t Stretch Me – Content-Hugging

All views have both a horizontal and vertical Content-Hugging priority.
These tell the layout engine how strongly a view resists stretching beyond
its natural size in each dimension. The higher the Content-Hugging
priority, the more a view resists stretching.

When the layout engine needs to stretch a view to fill a space it chooses
the one with the lowest Content-Hugging priority. If there’s not one view
and only one view with the lowest priority the layout is ambiguous.

Changing the Content-Hugging or Compression-
Resistance priority doesn’t a�ect views with no intrinsic
content size.

A Practical Example Using Interface Builder

Let’s look at some situations where you need to change either the Content-
Hugging or Compression-Resistance priorities (see sample code: CHCR-
v1).

Stretching A View

Look at this setup with an image view and a label arranged horizontally.
I pinned the image view to the leading margin of the superview and the
label to the trailing margin. I pinned both to the top margin and added a
standard amount of horizontal spacing between the views.

201

https://github.com/kharrison/ALBookCode/tree/main/sample-code/layout-priorities/CHCR-v1/
https://github.com/kharrison/ALBookCode/tree/main/sample-code/layout-priorities/CHCR-v1/

Modern Auto Layout 7. Layout Priorities And Content Size

I’ve shown the views at their natural intrinsic content sizes. The widths
of the two views are not enough to fill the space between the margins.
Interface Builder warns you of an ambiguous layout:

The layout engine wants to stretch one of the views to fill the space but
which one? Well, that depends on the Content-Hugging priorities. If you
create this layout with Interface Builder both the image view and the
label have a default horizontal Content-Hugging priority of 251.

This is an example of Interface Builder trying to be helpful. If you create
the layout in code the priority of both views is 250. Either way, the layout
is ambiguous.

I want to stretch the text label, so I need to make sure it has the lowest
Content-Hugging priority. For example, I can keep the image view priority
at 251 and lower the label priority to 250:

202

Modern Auto Layout 7. Layout Priorities And Content Size

Notice that the absolute value of a priority is often not so significant.
What counts is the value relative to the other views involved in the layout.
Use the Interface Builder size inspector to change the horizontal Content-
Hugging priority of the label to 250:

Once we remove the ambiguity the layout engine stretches the label to
fill the available space keeping the image view at its natural size:

203

Modern Auto Layout 7. Layout Priorities And Content Size

Squeezing A View

What would happen if our layout was too big to fit in the available space?
This can happen easily enough when localizing or working with Dynamic
Type. Here’s what happens to our layout when I double the font size of
the label from 30 points to 60 points:

The text label has grown beyond the bounds of the superview. Our layout
no longer fits within the margins and is once more ambiguous:

To satisfy the constraints the layout engine looks for the view with the
lowest Compression-Resistance priority to squeeze. Unfortunately, both
views have a horizontal Compression-Resistance value of .defaultHigh
(750). Raising the priority for the image view to 751 fixes the problem:

204

Modern Auto Layout 7. Layout Priorities And Content Size

Use the Interface Builder size inspector to change the horizontal
Compression-Resistance priority of the image view to 751:

Our layout should now fit with the image view staying at its natural size
and both views fitting between the margins. I set the numberOfLines
property of the label to 0 so it can flow over more than one line if needed.

Summarizing the horizontal priorities we set for the two views:

205

Modern Auto Layout 7. Layout Priorities And Content Size

View
Content
Hugging

Compression
Resistance

Image View 251 751

Text Label 250 750

• The label has the lowest Content-Hugging priority to make it stretch
when our layout is too small to fit in the available space.

• The label has the lowest Compression-Resistance priority to squeeze
it when our layout is too big to fit in the available space.

Here’s how the layout looks in portrait and landscape:

In portrait, the label is squeezed to fit and flows over multiple lines. In
landscape, the label is stretched to fill the extra space. In both cases, the
image view maintains its natural content size.

Defaults When Creating Views

Most views have a .defaultLow (250) content hugging priority when cre-
ated and a compression resistance of .defaultHigh (750). I summarized
the defaults for some common views and controls below. These defaults
apply to both horizontal and vertical priorities.

206

Modern Auto Layout 7. Layout Priorities And Content Size

Views
Content
Hugging

Compression
Resistance

UIView UIButton UITextField
UITextView UISlider
UISegmentedControl

250 750

UILabel UIImageView 250 (Code)
251 (IB)

750

UISwitch UIStepper
UIDatePicker UIPageControl

750 750

Notes:

1. Controls like the switch, stepper, data picker, and page control
should always display at their natural size so have .defaultHigh
(750) priorities.

2. If you create a UILabel or UIImageView with Interface Builder, they
have a Content-Hugging priority of 251. If you create them in code,
you get the default value of 250. Interface Builder assumes that
most of the time you want labels and images to stay at their natural
content size.

Working With Priorities In Code

Let’s repeat our last example of stretching and squeezing views in code
(see sample code: CHCR-v2). I’ll skip the details of the view setup and
constraints and jump to the creation of the image view:

private let sunImage: UIImageView = {
let view = UIImageView(image: UIImage(named: "Sun"))
view.translatesAutoresizingMaskIntoConstraints = false
view.setContentHuggingPriority(.defaultLow + 1, for:
.horizontal)
view.setContentCompressionResistancePriority(.defaultHigh +
1, for: .horizontal)
view.backgroundColor = .orange
return view

}()

We increase the horizontal Content-Hugging and Compression-Resistance
priorities for the image view to one more than their default values. Re-

207

https://github.com/kharrison/ALBookCode/tree/main/sample-code/layout-priorities/CHCR-v2/

Modern Auto Layout 7. Layout Priorities And Content Size

member that views created in code have a default Content-Hugging
priority of .defaultLow (250) and Compression-Resistance priority of
.defaultHigh (750). So it’s the label that’s stretched or squeezed to fit
the available space between the margins.

Key Points To Remember

When we first looked at constraints we had a simple rule of thumb for
answering the question How Many Constraints Do I Need?.

To fix the size and position of each view in a layout we
needed at least two horizontal and two vertical constraints
for every view.

Note the at least as the two constraints per view “rule” only works with
required, equality constraints. Once we introduce optional and inequality
constraints it gets more complicated.

• All constraints have a layout priority from 1 to 1000. By default,
constraints are .required which corresponds to a value of 1000.

• Constraints with a priority less than .required are optional. The
layout engine tries to satisfy higher priority constraints first but
always tries to get as close as possible for optional constraints.

• Combine optional constraints with required inequality constraints
to pull a view as close as possible towards a size or position without
violating other constraints.

• Once you have added a constraint to a view you cannot change its
priority from required to optional or vice versa.

We can also relax our rule of thumb when working with views that have an
intrinsic content size. This includes many of the standard UIKit controls
like labels, switches, and buttons.

• The intrinsic content size of a view is the natural size a view wants
to be to fit its content.

• Under the covers UIKit adds width and height constraints for us
that set the intrinsic size of the view.

• You can always override the intrinsic size by adding constraints.

Views with an intrinsic content size will not always fit perfectly in the
available size of their superview. When Auto Layout has to stretch or

208

Modern Auto Layout 7. Layout Priorities And Content Size

squeeze views to make them fit it takes into account the relative content
priorities of the views:

• Views have both horizontal and vertical Compression-Resistance pri-
orities that tell Auto Layout how much a view resists being squeezed
in that dimension. Auto Layout squeezes the view with the lowest
Compression-Resistance priority first.

• Views have both horizontal and vertical Content-Hugging priorities
that tell Auto Layout how much a view resists being stretched in
that dimension. Auto Layout stretches the view with the lowest
Content-Hugging priority first.

• Changing the content priority of a view that doesn’t have an intrinsic
content size has no e�ect.

Not sure when to change content priorities? Ask yourself these two
questions:

• Canmy layout ever be too big to fit in the available space? If so decide
which view to squeeze first and give it the lowest Compression-
Resistance priority.

• Can my layout ever be too small to fit in the available space? If so
decide which view to stretch first and give it the lowest Content-
Hugging priority.

Test Your Knowledge

Practice using optional constraints when you need to pull a view as close
as possible to a size or location. Learn to spot when you’re working with
views that have an intrinsic content size and need to change the content
priority to stretch or squeeze a view.

Challenge 7.1 Twice As Big If Possible

Two multi-line labels arranged horizontally show an author name and
quotation. Both labels are using the 24 pt system font. I want the left
author label fixed to the leading and top margins and the right quotation
label fixed to the trailing and top margins. There’s a standard amount of
horizontal spacing between the labels.

209

Modern Auto Layout 7. Layout Priorities And Content Size

The author label must be at least 160 points wide (but it can be wider).
The widths of the two labels should fill the available space with the
quotation label being twice the width of the author label if possible. If
there’s insu�cient space, it should be as close as possible to twice the
width.

1. Build this layout using Auto Layout. You can choose to use a story-
board or create the layout programmatically (or do it both ways!).
If you use a storyboard, you should not need to write any code.

2. Run your layout on di�erent devices in both portrait and landscape
and check that the author label is always at least 160 points wide.
When there’s space, the quotation label should be twice the size of
the author label with both labels growing to fill the available space.

Hints And Tips

1. When creating the labels set the number of lines to zero so that the
text wraps across multiple lines.

2. What type of constraint should you be thinking about when you see
“at least 160 points wide”?

3. What type of constraint should you be thinking about when you see
“if possible”?

4. The width constraint for the author label needs a greater than or
equal relation. It’s a required constraint (“must be”).

5. The width constraint between the two labels is an optional (“if pos-
sible”) constraint. We want it satisfied but only if there’s su�cient
width. Otherwise, the layout engine should get as close as it can.

6. The priority of the optional width constraint needs to be less than
1000. The exact value is not important, using 750 is common.

210

Modern Auto Layout 7. Layout Priorities And Content Size

7. You don’t need to change content hugging or compression resistance
priorities.

Challenge 7.2 Stretch Or Squeeze?

This time I have a share button and a quotation label arranged horizontally.
As in the last challenge, the text is 24 pt system font and a standard
amount of spacing separates the button from the label. I fixed the items
to the top and side margins:

The button should stay at its natural size and the label resize to fill the
available width. The text can flow over multiple lines if required. Here’s
how it looks in landscape:

1. Build this layout using Auto Layout. You can again choose to use
a storyboard or create the layout programmatically. If you use a
storyboard, you should not need to write any layout code.

2. Run your layout on multiple devices in both portrait and landscape
to check that only the quotation label changes size to fit the available
space.

Hints And Tips

1. I added a small amount of padding to the button by setting the left
and right content insets to 20 and top and bottom to 10.

2. Set the number of lines to 0 for the label, so the text flows over
multiple lines.

3. In portrait, there’s not enough width for the label to fit with a single
line of text. Squeeze the label by making its horizontal compression
resistance priority lower than the button priority.

211

Modern Auto Layout 7. Layout Priorities And Content Size

4. In landscape, the label must stretch beyond its natural size to fill
the space, so its content hugging priority needs to be the lower than
the button priority.

5. The label has a default content hugging priority of 251 in Interface
Builder and 250 if created in code. The button always has a default
content hugging priority of 250. The button and label have default
compression resistance priorities of 750.

Challenge 7.3 A Big As Possible Square

Suppose I have a green view that must be square and in the center of the
screen. I want it to be as big as possible while staying fully on-screen. For
an iPhone, in portrait, the square is as wide as the screen. In landscape,
it’s as tall as the height of the screen:

1. Build this layout using Interface Builder or in code.

2. Test on a variety of devices from the smallest iPhone SE up to the
larger iPads. Verify that the green view remains square, centered in
the view and is as large as possible while fitting entirely on-screen.

Hints And Tips

1. You need to use a combination of inequality and optional constraints
for this layout.

2. Start by describing the position of the green view, make the green
view square, then work on the width and height.

3. Remember when something about our layout must be true it’s a
required constraint. When we want something as close as possible,
it’s an optional constraint.

4. Make the green view square by giving it equal width and height.

212

Modern Auto Layout 7. Layout Priorities And Content Size

5. Imagine the square expanding from the center. The width must
never be greater than the width of the root view. The height must
never be greater than the height of the root view.

6. Inequality constraints are not enough to fix the height or width of
the green view. You need to add a constraint that pulls either the
width or height as close as possible to the width or height of the
root view without violating the other constraints.

7. You can solve this with 5 required constraints (2 of which are in-
equalities) and 1 optional constraint.

213

One More Thing

Already A Subscriber?

Are you an iOS developer interested in learning what’s new but
struggling to keep up? Maybe you’re also a little tired of watching
all those WWDC videos?

I write regular articles covering what’s new in iOS and Swift.
Find out what changed in the latest release of Xcode. What new
features you need to support? What new bugs will waste your
time!

Sign up to my free iOS newsletter and I’ll send the full text of
each new article direct to your inbox so you never miss a post!

Find out more and subscribe

useyourloaf.com/newsletter

494

https://useyourloaf.com/newsletter/

	Introduction
	Why Learn Auto Layout?
	Modern Auto Layout
	Before We Get Started
	What We Will Cover
	Get The Code
	Change History

	Layout Before Auto Layout
	Our First Layout
	Autoresizing
	Creating A Custom Subclass Of UIView
	Layout Without Storyboards
	Xcode Previews
	Key Points To remember
	Test Your Knowledge

	Getting Started With Auto Layout
	What Is Auto Layout?
	What Is A Constraint?
	Who Owns A Constraint?
	How Many Constraints Do I Need?
	Test Your Knowledge

	Using Interface Builder
	The Many Ways To Create A Constraint
	Editing A Constraint
	Creating Outlets For Constraints
	Viewing Layout Warnings And Errors
	Interface Builder Example
	Interface Builder Tips And Tricks
	Test Your Knowledge

	Creating Constraints In Code
	Activating and Deactivating Constraints
	Disabling The Autoresizing Mask
	Creating Constraints With NSLayoutConstraint
	Visual Format Language
	Layout Anchors
	Which Should You Use?
	Constraints In A Custom View
	Key Points To Remember
	Test Your Knowledge

	Safe Areas And Layout Margins
	Safe Area Layout Guide
	Layout Margins
	Layout Guides
	Keyboard Layout Guide
	Key Points To Remember
	Test Your Knowledge

	Layout Priorities And Content Size
	Layout Priorities
	Intrinsic Content Size
	Content Mode
	Content Hugging And Compression Resistance
	Key Points To Remember
	Test Your Knowledge

	Stack Views
	Getting Started With Stack Views
	A Closer Look At Stack Views
	Stack Views And Layout Priorities
	Dynamically Updating Stack Views
	Adding Background Views
	Stack View Oddities
	Key Points To Remember
	Test Your Knowledge

	Understanding The Layout Engine
	The Layout Pass
	Should You Use updateConstraints?
	Animating Constraints
	Custom Layouts
	Alignment Rectangles
	Key Points To Remember
	Test Your Knowledge

	Debugging When It Goes Wrong
	Unsatisfiable Constraints
	Adding Identifiers To Views And Constraints
	Ambiguous Layouts
	Using The View Debugger
	Private Debug Methods
	Layout Loops
	Key Points To Remember

	Scroll Views And Auto Layout
	Creating Constraints For A Scroll View
	Frame And Content Layout Guides
	Scrolling A Stack View
	Managing The Keyboard
	Key Points To Remember
	Test Your Knowledge

	Dynamic Type
	Using Dynamic Type
	Readable Content Guides
	Text Views
	Scaling Dynamic Type
	Custom Fonts With Dynamic Type
	Restricting Dynamic Type Sizes
	Key Points To Remember
	Test Your Knowledge

	Working With Table Views
	Table View Row Height
	Self-Sizing Table View Cells
	Readable Table Views
	Self-Sizing Table View Headers
	Key Points To Remember
	Test Your Knowledge

	Adapting For Size
	Trait Collections
	Size Classes
	Supporting iPad Multitasking
	Using Size Classes With Interface Builder
	Using Traits In Code
	Using Traits With The Asset Catalog
	Variable Width Strings
	When Size Classes Are Not Enough
	Key Points To Remember
	Test Your Knowledge

	Tour Of Interface Builder
	Xcode Toolbar
	Inspectors
	Library
	Document Outline
	Device Configuration
	Configuring The Editor
	Assistant Editor
	Previewing Your Layout
	Auto Layout Tools

	Layout Essentials
	The View Hierarchy
	View Geometry

	Points vs. Pixels
	One More Thing

